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I. INTRODUCTION

Let W(0SW<1) be a statistic whose 4** order moment is as
under
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where X is a constant such that E(W°)=1 and
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Box [3] has given a general asymptotic expansion of the distri-
bution of W. The same expression has also been reproduced by
- Aunderson in his book [1]. Using the moments Box has first deter-
mined the characteristic function of the statistic. He has then applied
expansion formula for the gamma function due to Barnes [2] and .
then using the inversion theorem for characteristic function he has
obtained the density function of the statistic. :

In this paper, we obtain the asymptotic density function of the
same statistic by a simple method. We avoid the use of characteris-
tic function and directly apply expansion formula (2.3a) to the A%
order moment, @, of the statistic and then obtain the density func-
tion by simply taking the inverse Mellin transform of &,. In the pro-
cess Box has introduced a dummy multiplier ¢ (0<<p<I) to the
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statistic involved. But we have avoided introducing e and have gone
ahead without it. This considerably simplified our procedure.

2. SoME PRELIMINARY RESULTS

Some important results and formulae employed in what follows
are as-under :

(i) Consider, for a complex variable s, the functions fix) and
F(s) related as follows :

F(s)= j f(x) x*~t dx
0

where F(.i‘) is called the Mellin transform of f(x). T.hé inverse Mellin
transform f(x) of F(s) is defined [5] as follows : ’
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(#/) An important result [4] which will be used in the sequel is
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(iii) An expansion formula for the gamma function [2] which is
asymptotic in x for bounded 4 is

) o m
D(x+h)= V2m x=t*t exp {—x— z
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where Rys1(x)=0(x~m+1) and B(") is the Bernoulli polynom1a1 of
degree r and order unity defined by

,teh‘r b < (‘h) '
F5 = ,FBT. . ...(2.3b)
r=0
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3. ASYMPTOTIC DISTRIBUTION

Changing h=s5—1 in (1.1) and using (2.3a), we gét
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Using the power series expansion of e* we rewrite (3.1) as

. I 1 1 2
B=s e 1=t o (o1 Yot (=241 )
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7‘+...+R;;,+1_‘J , ...(3.2)

Now taking the inverse Mellin transform of E(W*=1), the asymp-
totic density f(W) of W is given as below :
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| ) »? -
wz+<;§'— 1 )T‘Jr ..+R;,,+1] ds
‘Using (2.2) we get
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Setting —2 log W=Z and integrating (3.3) from 0 to zo, we get
the asymptotic distribution funciion of Z as follows :-

Pr (Zgz(l):Pr (X?<ZQ)+C\)1 {Pr (sz‘.i.ggzo)'—l)r(x? <Zo)}

+ w2 {P, (X2, <z0)—P, (X2<20)}
+ %——{Pr (X%.M <Zl.‘l)_z P, (st+2<lo)

"l“Pr (Xf—i— <Zo)}] + ........ +Rm+1 ..‘.(3.4)
where X? is chi-square with f degrees of freedom.

It will be clear that the abovep rocedure is simpler than that
given by Box [3]. Further, the result (3.4) agrees with that of Box
[3] or Anderson {1], the only exception being that in his result there
is a p-multiplier for which different values have got to be inserted for
finding the distributions of different test statistics. It is this factor
¢ which has also made his results more complicated. -

4. ILLUSTRATION

(i) Consider for instance (Anderson 1958, pp. 191) the L-R
criterion, A, for testing the general linear hypothesis about regression
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coefficients. By setting in (3.4) the following =

W=M, a=b=p, xk=%" yi= Zk———( g+1-k)

2 3
I N e
=7~ 1)) =1, 2,.p-
we obtain |
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(i) Consxder next- (Anderson 1958, pp. 238) the I-R criterion,
A, for testing lndependenoe of g sets of variates. Setting

N oy k- = .
?: Ek'—__z' yk=1,2,..,p;

yi= 5= J+p1 D 1,]=p1+p,._1+1,...,

W"= )\, a5b=' p’, Xp=

P1+P2+Pa+ +px, 12 s,
we obtain :

P (—2 log 2o zg)= P X(pz-z,,z <zo)+ {2 (p* —Zp3
+9(p—ZpD} X {P,. (xm_z,,z )/2+2<zo) —P (x(pz_zz;?)/xzo)}

- (7" —2p)+6(p°~ 29+ 115"~ Zp)} .
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1

S G-I -2

X {P (X(pz_zp%) /2+4<Zo) - 2Pf(x(2p2—2p?)/2+2<20)
P, () 2< 0+ .(3.6)

Similar expressions for the other criteria such as for testing the
equality of covariance matrlces, testmg that g normal populations are
identical, spheticity test etc, can also be obtained by making suitable
substitutions in (3.4),
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